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Abstract. On the basis of the complex WKB method. new spectral series for perhubed states 
of an ‘anisompic’ hydrogen atom, taking into a m u n l  the electron’s spin polarirarion in a 
homogewous magnetic field are constructed. These series correspond to conditionally periodic 
motions of a classical elecmn in the plane orthogonal lo the field direction. The semiclassical 
wavefunctions are regular in the enlire configuration space including the focal points and have 
the ‘superscar’ properties near the domain of classical motion, i.e. near the projection of stable 
two-dimensional Lagrangian tori on the conhguration space. Bath for ScMdinger and Pauli 
operators the analytical description of the semiclassical wavefunctions ‘superscar’ svuchm is 
obtained. This SVUCIM is non-uniform with respect lo the space coordinates and has singularitis 
with rrspect to Oe parameler h. h -+ 0, near focal points. In the limit case of Stmng magnetic 
Bel& explicit analytical formulae for the semiclassical energy levels are obtained. 

1. Statement of the problem 

We consider the following spectral problem for the Pauli operator with spin-orbit interaction 
[11 

.f&,@ = E@ @ E L2(R2,y.i) x cz (* = W l ,  W‘) (1.1) 

where the quantum Hamiltonian has the form 

kp = fis + Ps-f 
1 e 2  e2 

k$=-(-fiV--A) 2m C + V , ( x , y , z )  v Y = -  Y 2 0  
4 x 2  + y2 + yz* 

y is the parameter of anisotropy of the scalar potential V , ( q ) ,  q = ( x ,  y .  z), eo = -e, e 
is the charge of the electron, A = i H ~ ( - y , x ,  0) is the vector potential of homogeneous 
magnetic field, cs-f i s  the operator of interaction between the spin and the external field, 
U = ( U , ,  uz,u3) are the Pauli matrices, eE = -VV, (q ) ,  H = V x A. For y = 1 problem 
(1.1)-(1.2) is the anomalous Zeeman effect problem [I]. 

0305-4470195/205611+19$19.50 0 1995 IOP Publishing Ltd 5811 
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The purpose of thii paper is to obtain information on individual eigenvalues and 
eigenfunctions (spectral series) of problem (1.1)-(1.2) in the semiclassical approximation 
(as li + 0) in the widest range of classical parameters y and Ho. including the intermediate 
domain of magnetic field values (108-10’o G). This is the most difficult case for study 
by other methods, such as regular perturbation theory and its various modifications 12- 
61, because in this domain, as y - 1, the magnetic and Coulomb interactions are of the 
same order. The semiclassical approximation based on the standard multidimensional BBK- 
WKB-Maslov method cannot be applied here, because the corresponding three-dimensional 
classical system 

with Hamiltonian 
1 e 2  

ff = H,(P, 9 )  = 2;;; (P - ;A) + V y ( q ) .  (1.4) 

is only ‘partially’ integrable. Due to the axial symmetry of the electromagnetic field, 
system (1.3H1.4) has only one motion integral additional to the energy. This integral is 
the projection I = xpy - ypr of the orbital momentum onto the axis z .  

Nevertheless this non integrable system (with one cyclic variable) permits special 
families of invariant (with respect to Hamiltonian dynamics (1.3)) Lagrangian ton Ak, 
their dimension k being less than the dimension of configuration space R:. 

The existence of such families in the phase space of the classical system is a result of 
its symmetries; the continuous axial symmetry generates the family of closed phase orbits 
h’(1) (cf part I) corresponding to the stationary rotation or relative equilibria of the system 
on the reduced phase space [7]; the discrete symmetry of Hamiltonian (1.4) with respect to 
the canonical change of variables z H -2 ,  pz H -pz generates the family A’(1, E ) ,  of 
two-dimensional isotropic tori, lying in the vicinity of A’(!) (see figure 1); E is the energy 
of the system. The projections D:(l) and D,”(I. E )  of these tori onto the configuration 
space lie in the plane z = 0, orthogonal to the magnetic field H. 

When invariant families of isotropic tori Ak,  of less than full dimension (k  < n), exist in 
the phase space of a classical n-dimensional system in the region of its regular (non chaotic) 
motion, we can carry out the basic idea of semiclassical quantization, i.e. to establish a 
correspondence between quantum and classical objects. In other words, we can associate 
this family of invariant ton with semiclassical spectral series (quasimodes)-sequences 
of asymptotic as h + 0 eigenvalues and eigenhnctions of the quantum Hamiltonian. 
A mathematically rigorous variant of semiclassical quantization of isotropic tori (small 
dimensional Lagrangian) is the complex WKB method. It is based on Maslov’s complex 
germ theory [8,9] and was developed in [IC-lZ] both for scalar and mahix Hamiltonians. 
A complex germ is a geometric object that determines (together with the isotropic torus) 
the complex part of the wavefunction phase. The existence conditions of this object are 
similar to the conditions of orbital stability (in the linear approximation) for isotropic tori. 
The complex germ consbuction is connected with special complex solutions of a linear 
Hamiltonian system (system in variations). This system is the linearization of the initial 
Hamiltonian system in the vicinity of the invariant isotropic torus. 

In part I [I31 we quantized a family of closed phase orbits A ’ ( 1 )  by this method. Here 
we construct spectral series associated with the family of two-dimensional isotropic ton 
Az(r, E )  for the same quantum problem (1.1H1.2). This is a non-trivial problem because 
these tori have focal points (which form caustics: see figure 1) in the radial variable. Hence 
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Figure 1. Quantized invariant objects in phase space R:,8: A'( / ) ,  closed phase c w e ;  A2(1, E ) ,  
two-dimensional Lagrangian (isotropic) torus; R+, radial turning points; Z j  = SiUS!. caustics; 
DZ(1, E ) ,  projection of Az(/, E )  on configunrion space W: in the plane z = 0. 

(as in the full dimensional case (k  = n) in the real WKB method), singularities of the 
wavefunction arise in the vicinity of such points. 

The main result of this part of the work is as follows. In sections 2-6 for problem (1.1)- 
(1.2) we construct new semiclassical spectral series, i.e. sequences of asymptotic as A -+ 0 
eigenfunctions 'T?",<(q, h)  and eigenvalues Ea,r(h), corresponding to the conditionally 
periodic two-frequency motion of the classical electron in the plane z = 0, orthogonal 
to the field H .  Here n = (nl,nz,ns), n j  are integer numbers, ( = f l  is the electron 
spin. The wavefunctions obtained are regular in the entire configuration space (including 
focal points) and have the 'superscarring' property (cf [13]), i.e. there is an accumulation of 
density in the coordinate space near the two-dimensional domain D,'(f, E )  of the classical 
motion of the electron in the plane z = 0. In section 6, using the general formulae from 
[10-12], the structure of superscars of semiclassical wavefunctions, associated with the 
family of stable ton' Az(I ,  E )  is investigated. This structure is non uniform with respect to 
the space coordinates and possesses singularities with respect to the parameter h,  h + 0, 
near the focal points. Let us remark that for unstable periodic orbits a semiclassical theory 
of the scar phenomenon for semiclassical wavefunctions (which was discovered by Heller 
[14]) has been constructed in configuration space by Bogomolny 1151 and in phase space 
by Berry [161 (see also Robnik [ 171). 

In section 7 explicit analytic formulae for semiclassical energy levels in the limit case 
of strong (Ho + CO) magnetic fields and for any value of  the anisotropy parameter 
y z 0 are presented. We obtain these formulae in the form of a regular expansion in 
the parameter E$ = E'/' - Hi'/' << 1. Here E = aH/aa as the ratio of the Larmor radius 
a~ = (ch/e&)t'z to the electron's Bohr radius an = h2/me& 

The possibility of carrying out this investigation is due to the following fact. From the 
analytical point of view the complex WKB method reduces the construction of the germ 
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asymptotics for the quantum problem (1.1)-(1.2) to the integration of three systems of 
ordinary differential equations: the nonlinear Hamiltonian system (1.3) (to find isotropic 
tori Az(I ,  E ) ) ,  the corresponding linear Hamiltonian system in variations (to construct the 
complex germ) and a linear system-the polarization equation-to describe the electron's 
spin evolution. 

Hence, to analyse the semiclassical energy level dependence on the other classical 
parameters of the system, we can use well developed asymptotic methods. In particular, to 
study the semiclassical energy levels in limit cases of the magnetic field value Ho, we use 
the Poincar&Linstedt method [I81 for the nonlinear equations of motion, the averaging 
method for linear Hamilton systems with high frequency parametric perturbation [19], 
for the equation in variations, and the standard perturbation theory for the electron's spin 
polarization equation. 

As is known ([20-24]), for spectral problems with matrix Hamiltonians such as (1~1)- 
(1.2), the orbital (q = ( x ,  y, z)) and spin (c = f l )  variables can be separated up to O@), 
A -+ 0 in the wKB approximation. The same idea is valid for the complex WKB method 
[12]. The semiclassical spectral series of the initial spectral problem have the following 
structure (outside the neighbourhood of focal points) 

*n,c(q.A) =*n(q+A) . f<(q )  & , c ( f i ) = & ( f i ) + f i ~ ~ [  +0(h2) (1.5) 
&(A), Qn(q,  A)  is the semiclassical spectral series of the scalar Schr6dinger operator &) 

f%*E(q ,A)  = E W E ( q , f i )  W E ( q , h )  E -h@:) ( 1.6) 

V V Belov et a1 

( E  is the spectral parameter), q = ( x ,  y ,  z) and pL[, f c ( q )  is a solution of the spectral 
problem for the polarization equation on the invariant torus A'([, E )  = (q  = Q(q, rz), p = 
P(r1, rz), 0 < rj < 2z), rj being the angular coordinates on the torus; 

d 
-izf< + ntbtft = prft fc : + c2. (1.8) 

Here f r  = fc (q = Q(rl,  5 2 ) )  and d/dt is the differentiation along the trajectories of system 
(1.3) and the polarization matrix n has the form 

(1.9) 

In the case of the Dirac operator a similar reduction of the initial spectral problem to solve 
a scalar problem of type (1.6) and the corresponding polarization equation for the electron 
spin was performed in (25,261. For problem (l.l)-(I.2) obviously, matrix (1.9) is the limit 
of the corresponding polarization matrix in 1261 (see formula (5.132)) as @ = v / c  -+ 0, 
where v is the speed of the electron. 

Thus, we have to solve two auxiliary problems. The first of them (the spectral problem 
for the Schrodinger equation) has an original scientific meaning by itself. 

2. Construction of the family of two-dimensional isotropic tori Az(I, E )  with the 
complex germ r3(Az(I. E ) )  

In cylindrical coordinates p7 z, v, the Hamiltonian function Hs corresponding to operator 
(1.7) has the form 
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The variables p P .  pz and p ,  are canonically conjugate to the variables p, z ,  p(mod2z); 
OH = eoHo/mc is the cyclotron frequency, e = -eo, eo > 0 is the charge and m is the 
mass of the electron. 

In a Hamiltonian system with a cyclic (angular) variable one can always single out a 
special family of closed trajectories A’(I)+ircles, which are stationary motions or relative 
equilibrium states of the system in reduced phase space with coordinates p. z,  p p ,  pe .  As 
shown in part I ([13]), the explicit expression for A’(I) can be given when the values of 
the energy interval E and the momentum projection integral I (I = p,) are related by the 
following formula 

E = ff(I) = 0~112 - eZ/(2Ro(I)) 4- moiR$(I)/4. (2.2) 
Here Ro(1) is a critical point of the ‘effective’ potential 

~ [ ( p ,  z )  = 12/(2mpz) + moZ,p2/8 - ei(p2 + YZ’)-’/~ 

in the plane z = 0. Ro(1) is the solution of the equation 

n i 2 0 ~ R ~ / 4  + e&Ro = I?. 

(2.3) 

(2.4) 

Let us fix the values of the motion integrals of energy E ,  E = EO and of momentum p, ,  
p ,  = Io,  so that the point (lo, EO) does not lie on the bifurcation curve E’ = { ( I ,  E ) ,  E = 
a([)) (see [7] and [13]). Let us also consider the intersection of the coordinate plane 
i7, = { ( p ,  q). pr  = 0, z = 0) with the level  ME^ = { ( p ,  q), Hio(p, q )  = Eo] of the reduced 
Hamiltonian function 

HI&, q) = H ( p ,  h q )  = ~ : / 2 m  + %~:/2m + VI&, z )  + wHI0/2 

in the reduced phase space Rz x Ri. 

 IO, EO) = { ( p ,  q), $/2m +  VI^(^, 0) + wHkd2 = EO. pr = z = 01. 

The intersection  ME^ r l  n, defines the closed curve 

(2.5) 

in which S‘(Io) = { ( p , ,  p), p ,  = 10, p E [0,2n)) is a circle (see figure 2) gives a two- 
dimensional Lagrangian torus A2(Io. Eo) in the initial phase space R i  x Ri. The torus 
A*(Io, EO) is invariant with respect to the phase flow gh of the Hamiltonian system (1.3)- 
(1.4). This fact follows from the integrability of the Hamiltonian system (1.3) in the plane 
n, and from the relations aHlap,lA2 = aH/azlA2 = 0. 

EO) is conditionally The motion of the Hamiltonian system (1.3) along the torus 
periodic with frequencies 

~ ( 1 0 ,  Eo) = 2 ~ T r ’ ( I o ,  Eo) 

where R&, Eo) are the radial focal points of the effective potential (2.3) with z = 0 
V,o(p,O) = EO-WHIO/~ ;  X ( w l t f r i , E o ,  IO) = R(t) isthesolutionofthe‘radial’Newton 
equation 

m i ?  + av,@(R,o)/aR = o  (2.8) 
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Figure 2. Projection of the family of invarim two-dimensional Lagrangivl tori hZ(I. E )  = 
A ' ( l )  x SI(/) in the plane z = pz = 0; R2 are Ihe radial tuming points. 

so that in coordinates of the phase space Rfv the periodicity condition for the motion on 
the torus A2 (2.6) has the formt 

p = Pf = ( p p  = P ( w t  + ? I )  =molX'(wlt+ri ,Eo,  lo),  pv = h , p Z  =O)' 
q = Qt = ( p  = X(W f + 51, Eo, lo) ,  'p = ~ z f  + rz + 8 h t  + ?I ) ,  z = 0)' 
where r = (q, 52) .  rj E [O; 2 x [  are angular coordinates on A', 8(q + Zrr) = @(cl). Here 
and below the derivative with respect to r, is denoted by prime. 

The projection 02 of the torus A2(I0, Eo) on configur?tion space, i.e. the domain of 
'light' or 'bright region', is an annulus lying in the plane z = 0 (see figure 1) 

The boundary of D: is formed by two circles S! and SL with radii R-(lo,  Eo) and 
R+( lo ,  EO) respectively. This boundary is a caustic curve, It is the envelope of the family 
of 'rays', i.e. of the projections of the trajectories of Hamiltonian system (1.3), that fill 
the torus A2(lo, Eo) everywhere densely in configuration space. We naturally assume the 
in&iant Lagrangian torus A2( I , ,  EO) (2.6) to be non resonant (i.e. on the ring of integers the 
frequencies ol(l0. Eo) and oz( l0 ,  Eo) (2.7) are linearly independent). We also assume this 
property to be valid in a certain neighbourhood Ufo,Eo C x PZi of the point ( IO,  Eo) 6 C1 
(see e.g. [7]). 

Now we construct the complex germ r 3 ( A Z ( I ,  E ) )  on the family of two-dimensional 
Lagrangian tori A'(!, E ) .  Consider the system in variations associated with (1.3) in the 
vicinity of A* given in (2.6). This system has the following form 

(2.9) 

0,' = {(P, z ,  P), P E IR-(lo, Eo), R,(lo, Edl, 2 = 0, (0 E IO, 2ir)). 

a='H""lhsa a = ( w , ~ ) ' w = ~ p € ~ ~ % = ~ q € ~ ~  (2.10) 

t For the sake of simplicity we shall omit the dependence on the pammeters E and I, wherever it does not cause 
confusion. 
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where the matrix in variations ‘Hw is 

II = ( P , d  E q,, P = ( P p ,  P q ,  P i 1 9  = (P , rP ,Z) .  (2.11) 

0 -1 Here J = ( )6x6 ,  (1 = ( ( S i j ) ) 3 x 3 ) ,  is the standard symplectic matrix [7]. Matrix 

3tMT is calculated at the points of conditionally periodic motion (2.9) on the invariant ton 
A’ (2.6). Due to the axial symmetry, matrix (2.11) depends on the radial motion R( t )  only. 
Hence (2.10) is a system with TI periodic coefficients. 

For system (2.10) we find three linearly independent solutions a&, 7 ) ,  k = 1,2,3,  
7 = (71, 72) E A’, satisfying the following conditions: 

(i) al( t ,  r )  and az(t, r )  form a basis on the plane tangent to A2 at the toms points 
(Pt, Q,) (2.9) and have the form 

az(t, 7 )  = (apr/arz. a ~ , / a r , ) ~  = (o,o, 0; 0, 1,o)‘ (2.12) 
(ii) all three solutions are skew-orthogonal to each other 

bj, akI(f, 7 )  = (ai, J 4 g  = 0 
(i) the solution as@, 7 )  is complex and satisfies the dissipativity condition 19,121 

{a3,Z3}(t, 7 )  = 2i (2.14) 
(here and below the bar over a vector means complex conjugation). It follows from (2.12)- 
(2.14) that the vector 4, r)  can have the following form 

(2.15) 
Then it is easy to verify that a&, 7 )  (2.15) is a solution of the system in variations (?,.IO), 
when w = mi, where x is a complex solution of the following Hill equation (the equation 
of an oscillator with variable periodic frequency) 

,f + Q@)x = 0 (2.16) 

j ?  k = 1 ,2 ,3  (2.13) 

a d t ,  7 )  = (0-0, w(t .  5), o,o, x ( t ,  r))‘. 

Q(t  + q) = Q ( t )  

Here R(t)  = X(wlt  + r] ,  I ,  E )  is the periodic solution of the Newton equation (2.8), VI is 
the effective potential (2.3) and &e, I .  E )  is a Zn-periodic function of e .  

As was mentioned above, the existence of the complex germ r”(Ak)  is equivalent to the 
condition of orbital stability of the isotropic torus A‘. For a two-dimensional isotropic tom 
A* (2.6), lying in the four-dimensional plane z = pz = 0 of the classical phase space WR,, 
this condition means that the torus is stable with respect to the small deviations Sp, = w ,  
Sz = x transversal to A2(I ,  E ) .  Hence we require all the solutions of the Hili equation 
(2.16) to be bounded for t E (-00, +CO). For a fixed value of the magnetic field Ho, let 
us denote the domain of stability of (2.16) by V(H0) E U ~ I ~ , E ~ ) .  Then according to Floquet 
theory (e.g. 118,191) a basis of solutions of this equation consists of functions x and 2 such 
that 

(2.17) 
where the characteristic exponent p ( I ,  E )  is real and does not depend on the point on the 
toms A2(I, E).  Normalizing the solution x hy the condition m ( f j  - k x )  = 2i we obtain 
the dissipativity condition (2.14) for the vector a&. 5).  

x(t + qt I ,  E )  = eio(l,E)X(t, I ,  E )  t E R’ 
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Note. Due to the explicit form of the variable frequency Q ( t ) ,  the stable solution (2.17) 
of equation (2.16), can be represented in the following form: x ( t )  = Z(ol t  t 71, I, E) .  
Obviously here Z ( q ,  I, E )  is a stable solution of the equation 

(2.18) 

V V Belov et al 

o: d2Z/drf t fi(71)Z = 0 

where S?(q + Zx) = f2(r1), z(71 + 2x, I, E )  = exp(ip(1, E)]Z(rl, I ,  E) .  
At any point r = (TI,  rz) E A’ we consider the three-dimensional complex plane 

r 3 ( r )  = E Cl, where rj(7) = aj ( f ,  r)l,=o, j = I ,  2,3. According to 
(2.12)-(2.14) this plane is Lagrangian, dissipative and contains the plane tangent to A2 at 
the point r .  The family of planes r3(r ) ,  7 E A’ defines the complex germ ?(A2([, E ) )  
on the invariant two-dimensional isotropic torus A2(1, E )  for ( I ,  E )  E V(H0). 

The pair [A2(1 ,E) , r3 (A2(1 ,E) )1  plays a key role in the construction of the 
semiclassical spectral series for problem (1.1)-(1.2) by the complex WKB method. 

3. Quantization conditions for the family of Lagrangian ton Az(I ,  E )  with the 
complex germ r3(Az(I, E ) )  

General quantization conditions of Bohr-Sommerfeld type for families of isotropic tori with 
complex germ were obtained in [IC-IZ]. Since the dimension of these tori is rigorously 
less than the dimension of configuration space, instead of the Maslov index for tori of full 
dimension, a new topological characteristic appears in the quantization conditions. These 
characteristics are the indices f i j  of the complex germ along the basis cycles of the isotropic 
tori. Let us calculate these characteristics in the considered case for two basis cycles, 
yp = (52 = const, 0 < TI c 2x1 and yv = [ZI = const, 0 < r2 i Z x } ,  of the torus A2(I ,  E )  
(see figure 1). To do this we compose 3 x 3 matrices B(r) and C(7) of ‘impulse’ and 
‘coordinate’ components of the vectors rj(7) = aj(t, r)l,=o, j = I ,  2 ,3  that form a basis 
on the plane r3 ( r ) ,  7 E A2(Z, E).  If we recall (2.12), (2.15) and @.IS), we get 

3 r / (r)uj ,  

P’(7l) 0 0 X’(rd @‘(SI) ; ) 
B(7) = 0 0 0 ) C(7)=  ( 0 1 (3.1) ( 0 0 molZ‘(rl) 0 0 z(S) 
The 2x-periodic functions P(71) and X(r1) determine the closed curve i l ( I ,  E )  (see 
figure Z), and Z(q )  is a stable solution of the Hill equation (2.18). The complex germ 
indices f i j  along the basis cycles yj, j = 1,2 of the torus A2(I ,  E)(yl  = yp; yz = yq) 
are defined as the complete increment of the argument of the determinant of the complex 
non-singular matrix B(r) + iC(r) 

(3.2) f i j  = Argdet(B(7) + iC(t))I,,,. 

Since the matrices B(7) and C(7) do not depend on 72, f iz  = fi, = 0. For the cycle yp, 
taking into account (3.1) we have 

f i l  = fiyp = kg(p’(71) + i~’(r1))(mwl~‘(s1) + iz(tl))l? = ~x + p ( r ,  E )  (3.3) 
where p ( I .  E )  is the characteristic exponent of the Floquet solution (2.17). In (3.3) we used 
the inequalities Z(71) # 0, hn(Z’(r~)/Z(r~)) > 0, that are implied by the normalization 
condition of the solution ~ ( r ) .  

Thus the quantization conditions for the family A 2 ( I , E )  with complex germ 
r3(Az(1,  E ) )  are (cf [IO]) 

(3.4) 
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(3.5) 

np being natural numbers, 1 integers, 1 = 0, & I ,  , . . . , 1 = l(h), 11(h)1 + 03, np = np(h) --t 
03 as h + 0. We have chosen the basis cycles yp and yp such that the motion along them 
implies only the change in one coordinate, or p.  Condition (3.4) gives I = lh. The 
second condition gives the semiclassical energy levels E = Er,,&) for the Scbradinger 
operator (1.7). 

4. Semiclassical spectral series for the Schrijdinger operator 

The quantization condition (3.5) can be rewritten in the following form 

This condition determines the spectral parameter E+El,5,Jh); here R+( I ,  E )  are the radial 
'turning' points, i.e., zeros of the integrand in the left-hand part of condition (4.1). If the 
numbers Il(h)l + 03 and np = n,(h) + 00, h + 0 are related to the parameter h by the 
following conditions 

then the semiclassical series of eigenvalues EL,+,, (h) for the Schrbdinger operator 
determined by (4.1) are associated with the motion of the classical system (1.3) along 
the invariant torus A2(lo, EO) (2.6) in the limit a sh  + 0, ( l o ,  EO) # Cl. 

Thus for all values of Ho, our method reduces the calculation of the semiclassical energy 
spectra, related to the regular quasiperiodic motion of the electron in the plane z = 0, to 
solving the algebraic equation (4.1), with the values of E and I in the stability domain 
U , o , ~ o ( H ~ )  of the Hill equation (2.16). 

5. The polarization equation (spin correction) 

The polarization matrix (1.9) for the family A2(I ,  E )  is a matrix with TI-periodic elements 
that can be calculated as in 1261: 

~~ 

e 1 0  
n l A z ( l , E )  - 2mc 

The spectral problem (1.8) for the two-component spinor f t  on Az(I ,  E )  has the form 

-idf,/dt + e(Zmc)-'(Ho + eI/ZmcR3(t))&3fr = prfr 

where the differentiation operator d/dt along the trajectories (2.9) has the form 

d/dtiA2 = (X, v,) + (P, v,,) = pja/ap + palap + ppa/app. 

due to (2.9): palap + pPa/app = ola/as~. Consequently, in global coordinates (rj ,  r2) 

-ioz(I, E)a/ar2 - iwI(1, E)alarl + a ( r d Z l f r )  = ptIf,) 

C = 

It is convenient to pass to the global coordinate z1 modZx, on the curve x'(1, E); then 

on A2(1, E )  we obtain the spectral problem 

f~(r1 + 2~~ ZZ) = ft(r1, rd ft(rlr 52 + 2x1 = fC(r1, r2). (5.1) 
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Here 
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u ( T ~ )  = [ H O  + e o ~ / ( ~ m c ~ ~ ( r I ,  E ,  ~ ) ) ] e o / ~ m c .  (5.2) 
We take (5.1) to a one-dimensional spectral problem on the circle through the transformation 
ft(T1, Tz)  = e x p { i k ~ ~ ~ ] v ~ ( T ~ ) ,  kz E Z (separation Of variables): 

-iolavt/aq + a ( r l ) ~ ~ ,  = (pt - kzoz)vt Vt(rl + Z Z )  = V(T1) kz E Z. (5.3) 
From here we get 

 TI) = v3 e x ~ l i k ~ ~ ~ I e x p I i < g ( ~ ~ ) l  

1 "  
pt = k l o l  + kzwz -!- z;;< a(rddri kl, kz E Z (5.4) 

where the vector vt is constant: v*l = (l ,O)*, v-I = (0, 1)'. Thus we have proved that 
the eigenfunctions and eigenvalues of the spemal problem (5.1) have the form 

Without loss of generality (see the remark in the next section) let us put kl = kz = 0 
in (5.5). Then we obtain the following spectral series (E,,, *"), associozed with the family 
A2(I ,  E )  for the Pauli operator (1.2): 

+O(h2) (5.6) 
where Er,nn,v@) is the spectral series for ihe Schrodinger operaior (i.7). 

6. Semiclassical wavefunctions 'superscarred' by the family of two-dimensional 
Lagrangian tori Az(l ,  E) with complex germ r3(Az(I, E)) 

In this section we associate the family [Az([, E ) , r 3 ( A z ( l ,  E))] ,  ( I ,  E )  E V(H0)  
quantized by conditions (3.4H3.5) with the semiclassical wavefunctions corresponding 
to semiclassical energy levels Ef,np.v(h) (4.1) (for the Schrodinger operator (1.7)) and 
Er,n,,,v,t(fa) (5.6) (for the initial problem (I.l)-(l.Z)). In both cases these functions are 
determined by the Maslov canonical operator with complex phase [9-121 on a special 
function $ on the torus A2(1, E): 

(i) for the scalar problem (the Schrodinger operator) 
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The electron spin polarization vector vt E C2 does not depend on the orbital coordinates 
q E Rz. Function g was obtained in (5.4). The properties of (6.1H6.2) are: 

(i) functions (6.1) and (6.2) are smooth in the entire configuration space including the 
neighbourhoods of caustics (see section 2 and figure l), 

(ii) they satisfy the spectral problems (1.1)-(1.2) and (1.6) up to O(k3/'),h + 0. 
Namely, substituting (6.1) and (6.2) in (1.1) and (1.6) respectively we obtain a residue of 
order R3/', h + 0 in the LZ norm, 

(iii) up to O(h"z), h + 0 these functions form an asymptotic complete orthonormal set 
of states (the index + means complex conjugation) 

1 d3q&'JJ:,,+ryn, = Jnn, f O(R"*) 

/ d3q&P:,tP.,,, = Jn,&t, + O(ki/z) 

4 = (P ,  9, Z) & = P 

f = 41 n = (1, no.  U). 

For details about the construction of the Maslov canonical operator in the general case 
see IS-lo] and [12,26] for the type of case considered here. We present only the final 
answer; explicit formulae for semiclassical wavefunctions (6.1). (6.2) for any q E "2. 
Properties (i)-(iii) can be verified by direct calculations as in [26]. 

Let us consider the semiclassical wavefunctions (6.1) for the Schrodinger operator. We 
consider three regions (see figure 3). The first is called the 'shadow' region and is situated 
outside a neighbourhood of the annulus R- -8 < p < R++& S > 0. Here the wavefunction 
equals O(fi"). R + 0. The second region is the interior of the annulus R-f8 < p < R+-& 
We call it the bright region or domain of light. There the asymptotic wavefunctions have 
the form 

Y = 'YI,~,+,,(P, (0, z ,  h)  = Ne"? 'Y+(p, z ,  f i )  
+ 

wheret S ( q )  is the classical action along the closed curve i l(I ,  E )  (2.5) directed 
counterclockwise (see figure 2) 

S ( n )  = ly P(rddX(r1). (6.4) 

The functions rF(p) are smooth (outside the turning points) branches of the equation 

p = X ( q )  R-  + 8 <  p < R+ -8. (6.5) 
av(ri, z )  = ( u ! ) - i ~ * ( i / ~ ) u ~ z ( r ~ ) ~ - i ~ z e x p ( - i ( u  + + ) ~ r g z ( q ) 1  

x exp(in(rt)z2/(2ft)jH,(z/(.Ji;lZ(rl)l)) U = 0. 1 , 2 . .  . (6.6) 
where H, are the Hermite polynomials. The complex 'frequency' Q(s1) is determined by 
the stable solution Z ( r l )  of the Hill equation (2.18) 

71 

( A r g Z ( s ~ ) ) ~ / ~  is the continuous branch of the square root of the argument of Z(q) # 0, 
0 < ri < 2rr at a fixed point rp. The constants C," equal C,' = 1, C; = exp(-ia/2). The 

t For simplicity here and below we omit the dependence on the panmeten I and E. 
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factors @,(r1, z) in (6.3) are the Fock states generated by the squeezed state O,d(rl ,  z) = 
(PO (see [27,28]) of the non stationary (with respect to the 'intrinsic' time rl) harmonic 
oscillator with &-periodic variable frequency b(71) (cf (2.16)) 

V V Belov er a1 

- = (-(h2/2m)a2/az2 + b(rl)zz/z)@o 
@"(?I, z) = (u ! ) -~~~~~+)" (71 )O0(71 ,z )  

(6.8) 

where Bt(rl) = (u t ) - ' / ' [mo i i ' (?~) ( -~a /az )  + Z(71)ZI is a dynamical symmetry of 
equation (6.8). 

Figure 3. Thc smcturc of the suppocl of individual ' s u p e n m d '  quantum states in fhe plane 
z =o. 

Finally, the third domain is the neighbourhood of the caustics p = R+, 0 < (o < 2n, 
z = 0. In the vicinity of the points & = X(r:), dX/drI(r?) = 0, which are singular with 
respect to the projection of A'([, E )  on configuration space, we use (as in the standard 
WKB-Maslov method) the momentum representation by means of the Fourier transform 
FpF,,, but only with respect to the radial coordinate p. Let us denote the semiclassical 
wavefunction here ( p  - R I )  as '$*. Then 

iF(pp) are the smooth branches of the solution of equation p p  = P ( T I )  = molX'(rI), in 
a small neighbourhood where 1r1 - < ~ ( 8 )  << I :  r?: P(r:) = 0 (see figure 2). The 
functions e*(r:) are smooth and finite (cut-off functions): e*(?:) = I if 151 -?:I < E but 
e*(s)  = 0 if lq - r:I z E .  The constants C,' equal C,' = e-i"/'C; =e-'". 

In the formulae (6.3) and (6.9) N plays the role of a normalization constant: N = 
(2T1n3/2h'/2)-'~, where fi  is the period of radial oscillations (2.7). 

Similar formulae are valid for the semiclassical wavefunctions oftke Pauli operator, It 
follows from (6.2) that @n,c - z1( = const and the scalar part of the asymptotic solution at 
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all points q E R: is determined by the next substitutions in formulae (6.3) and (6.9): ( g ( q )  
was defined in (5.4)) 

S(Tl) H s ( T i ) + h f g ( T i )  s (S)  H S(Tl)+fr tg(Td f = fl 
Remark. The considered case kl = kz = 0 does not limit the generality of our 
considerations since, if we put kl # 0. kz # 0 in (5.9, then the series of semiclassical 
energy levels (up to O(Rz), h -+ 0)  suffer only a renumeration of the orbital 1 and radial 
np quantum numbers: 

2 

&,n,.v,<(h) + f i  C w j k j  = El+Ai.n,+ki.v.<(h) + Ofi? f i  + 0. . .  
,=t 

In this case the semiclassical eigenfunctions (up to O(h),  R -+ 0) do not change: 

* 1 + ~ 2 . n , + ~ i . v . <  = Q’~,n,.v,c + O@) h -+ 0. 

We have taken into account the fact that the actual expansion parameters in this case are 
the ‘large’ quantum numbers 111 >> 1 and np >> 1, which are related to the parameter h, 
h -+ 0 by the conditions (4.2). In fact, selecting kz # 0, kl # 0, in formula (5.5) implies a 
change in the oscillating exponents of wavefunction (6.2): eilV H ei(l+kz)V and 

respectively. Therefore, taking into consideration the fact that lk21 << I ,  lkll << np (as 
R -+ 0) we obtain the estimates 
eiU+kdv = i b  e (1 + O ( ~ Z / ~ ) I > > I  

= e“’(1 + O(h))fi-+o 

> I  E=EIU2.n,+~,.U.I=(I+k~)fi  
exp +(P. E )  +ir:(p) 

= e i S i ( ~ . E . I )  I E = E , . + , ~ , I = V ~ ( ~  + O(kz/1) + O ( ~ i / ~ , J ) ~ > > ~ , f i ~ m  

( i  

= eis*@,Lv)(1 + ofi)) A + 0. 

The last estimates were obtained using a Taylor expansion in powers of k z / l  and k l ln , ,  
together with the known formula a&/aE(p ,  E ,  I )  + T&, E ,  I) = 0 [29]. 

Analysis of formulae (6.1) and (6.2) show that the semiclassical wavefunctions 
Y1+&, p, z ,  h )  are localized fi + 0). in a neighbourhood of the bright region filled 
by conditionally periodic trajectories (2.9). Inside the annulus, functions Y oscillate in the 
coordinates p and (o with frequency - l / h  and decrease exponentially in the coordinate z ,  
similarly to Gaussian packets with the frequency of quantum oscillations of the order h-l”, 
h + 0, determined by the zeros of the Hermite polynomials. 

It is precisely in this sense that these semiclassical wavefunctions possess the 
superscarring property in the coordinate space, near the projection of the ~ONS A’. The 
functions (6.2) for the Pauli operator (1.1) have the same properly. 

Quantum superscarring of the wavefunction is non-uniform with respect to the classical 
motion along the coordinates p and z .  The localization domain of probability density along 
z (near z = 0) is determined by dispersion U: = h(Im Z($(p)))-I  o f  the Gaussian packet 
@,=o(ri,z) (6.6): IzI < - 4, h + 0. Then inside the ring R- < p < R+: 
1Y12(p,z) = 0(1), but in the vicinity of the caustics S i ,  i.e. as p - Rzk, the accumulation 
of density is singular as h 4 0: lYl*(R*, z )  - T Z - ’ ’ ~ .  This structure of the quantum 
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superscaning follows from the estimate for the integral in the right-hand part of (6.9); cf 
[26], where it is shown that, in a small neighbourhood of the turning points, p - Rb - 
h --f 0, the function (6.9) is the product of the standard Airy function with respect to p and 
of 'squeezed' states @,(TI, 2). as r = s,+(~*). 

For the model of external field considered it follows from [26] that, for p - R*, the 
semiclassical wavefunctions @ ( p ,  cp, z) (6.9) have the form 

V V Belov et a1 

x@u(rt, z) 

where the parameter r: determines the turning points Ra = X(r:), X'(r:) = 0, 
Ai(n) is the standard Airy function, A i ( x )  = (Zn)-'l-:exp(i(fx + f3/3))dt,  D ( r I )  = 
P( r~ ) /mo ,o l ( s ) ' /~  and Ly(r1) = -(l/2m)(aVr/ap(x(rl), O V .  

The qualitative behaviour of the probability density pPlz (p ,  z )  is displayed in figure 4, 
where the superscar smcture of the semicIassical wavefunctions is illustrated. 

Figure 4. The qualitative behaviour of the density of 'superSWred' wavefunctions from (6.1); 
RI are the radial tuning points. 

7. Energy speetrum in the strong magnetic field approximation 

Let us assume that the magnetic field is so strong that the Bohr electron radius UB = h2/mei  
is much larger than the Larmour radius U" = (cA/eoHo)'/2. The condition QH << CZB holds 
for values of the field starting with HO - 4.7 x lo9 G. 
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7.1. The Schr8dinger operator 

Wc obtain the asymptotic expansion? of the semiclassical energy spectrum in 
half-integer powers of ES = uH/ag << 1 from (4.1). The main difficulty is to calculate 
the Floquet index p ( I ,  E )  for the stable solution of the Hill equation (2.16). We use the 
Poincar6Lindstedt method to solve the Newton equation and the averaging method to 
calculate the Floquet index. 

In the zero approximation as ES -+ 0 (without taking into account the Coulomb 
interaction in the plane z = 0), in strong homogeneous magnetic fields, the radial variable p 
changes with high frequency O H  = eoHo/(mc) -+ M, o ~ / w  = I/&: > 1, where 00 is the 
characteristic frequency of the classical motion in the Coulomb field. This allows us, at the 
second step in the calculation of p ( / ,  E ) ,  to apply the results of the averaging method in the 
theory of linear Hamiltonian systems with high frequency parametric perturbation (see [19]) 
to (2.16), and to obtain the expansion of p ( 1 ,  E )  in powers of A, ES -+ 0. Supplementing 
these computations with the standard expansion of the integral of motion (2nh-’ $’ p d x )  
as ES + 0, from quantization condition (4.1) we can obtain the approximate equahon for 
the spectral parameter E J , ~ ~ . & S .  h),  with accuracy O(E!), ES + 0, N = I ,  2 , .  . .. If we 
solve this equation by regular perturbation theory, we shall find the final representation of 
the semiclassical energy levels, corresponding to the family Az(/, E ) ,  for strong fields. The 
calculations according to this scheme are presented in the appendix. 

Finally, in this approximation, the semiclassical energy spectrum E ~ , ~ ~ , ~ ( f i ,  6s)  of the 
Schriidinger operator (1.7), associated with the two-dimensional quasipenodic motion of 
the classical electron over the invariant isotropic ton A2(1, E )  (2.6) can be expanded with 
respect to half-integer powers of the parameter ES = an/as << 1: 

yn 

Ef,+,u(h, E S )  = ‘$J//h(2n, f Ill f + f i ( 1  f 2U) f E ~ ” I ! ? I  f E s i z  0 ( E 3 ” ) )  -t o(h2). 

(7.1) 
” 

E j ,  j = 0. 1 ,2  are shown in formulae (A.11) of the appendix. 

7.2. The spin correction 

To obtain the spin correction we calculate (see (5.4)), using the expansions (A.3)4A.4), the 
integral 

in powers of ES, ES -+ 0. Up to O(E:) we obtain 

4 ik x-3(71, E ,  1, ES)d7J = 2nU; f ~ ( Y I U Z E S  4- O(E:), 

where 011 is defined in (A.8) and (YZ in (A.9). 

to the family A’(!+ E )  (2.6) has the form 
Finally, the series of semiclassical energy levels of problem (I . l )+.Z) corresponding 

(7.2) 

t A similar expansion in &i4 can be performed for weak fields. See I311 for y = 1, V,-t = 0. 
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1 = 0, f l ,  f2, . . . , n, = 0, 1 ,2 , .  . . , U = 0, I ,  2,. . . , 5 = r t l  and E I , , + , ~ ( ~ ,  es) from (7.1). 

8. Concluding remarks 

(1) The spectral series constructed, related to the family of stable two-dimensional 
Lagrangian ton A'([, E )  with complex germ r 3 ( A z ( I ,  E ) ) ,  describe the perturbed states 
of the system. These states are conditioned by the quick rotation of the electron (Ill >> 1) 
and its radial oscillation of large amplitude (n, >> I )  in the plane z = 0. The quantum 
number U = 0, 1,2, . . . determines the amplitude of the small axial (with respect to the field 
direction) oscillations: U << np, U < 111. We emphasize that, in coneast to the semiclassical 
wavefunctions, the semiclassical energy levels E,@) (4.1), E n , < @ )  (5.6). n = (1, n,, U), 

approximate the exact spectrum of problems (1.6) and (1.1) respectively, in the following 
sense. In a neighbourhood of order E', h -+ 0 of the level E.@) of problem (I.@, there 
exists an exact value (maybe not unique) of the spectral parameter E,,,,, such that 
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IEexut - En(h)I = Ochz) h -+ 0. 

The same estimation is valid for the semiclassical energy levels E,,<, F = &1 of the 
Pauli operator. This fact follows from a well known general proposition (see [20,30]) 
for the semiclassical asymptotics of a spectral problem when the asymptotic (as h -+ 0) 
wavefunction possesses properties (i)-(ii) (see section 6). 
(2) Taking hn, = O(h), h + 0 (i.e. considering np to be small, np - 1) in (4.1), (5.6), 
(7.1). (7.2), (8.1), (8.2) and making the substitutions np -+ U,, U -+ UZ. U,, uz = 0, 1,2,. . . 
we obtain the semiclassical energy spectrum corresponding to the motion of an electron 
along an equilibrium circle (see part I[13]). 
(3) For the spectral problem (l.1)-(1,2), without taking into account the electron spin 
(Qs-f = 0). formulae (4.1) and (5.6) for the semiclassical spectral series for the Schrodinger 
operator transform into the results of [31] if y = I ,  and of [32] for the anisotropic Kepler 
problem if y # 1, Ho = 0. As y = 1, Ho = 0, we obtain from (4.1) the exact spectrum 
of the hydrogen atom. Its main quantum number n equals np + 111 + 2u + 1. As V, = 0, 
eS = 0, we obtain from (7.1) the Landau levels of an electron in an homogeneous magnetic 
field, and the level number N equals n, + U + (1 + l11)/2. Here the semiclassical quantum 
numbers n,, 1, U enumerate the quantized two-dimensional Lagrangian tori. 
(4) In the physical model of a non integrable system considered, we have concentrated 
our attention on the computational aspect of the semiclassical quantization by means of the 
complex WKB method. We did not touch some interesting problems related to the geometric- 
topological nature of the complex germ indices on isotropic manifolds (Lagrangian of less 
than full dimension). They are being intensively studied at present (e.g., [33-351). In 
connection with this we note that the complex germ index & (3.2), along the generatrix 
y, of the tori A z ( I ,  E ) ,  can be separated into two parts: one topological and the other 
dynamical. its topological part is formed by the first term Zx, which can be more generally 
written as p z ,  where p is the Maslov standard indext of the closed (Lagrangian) curve 
A' ( I ,  E )  in the two-dimensional phase plane with coordinates (pp.  p ) .  The dynamical part 
is related to the characteristic exponent p ( I ,  E )  of the Floquet solution (2.17). Namely, 
its integer part [ p ( I ,  E ) ]  can be interpreted as the winding number of the closed phase 
trajectory A'( I .  E ) ,  with respect to the reduced four-dimensional phase space $,,, with 

t The complex constants C$ and C," in (6.3) and (6.9) M be represented in the form C," = and 
C,' = e+'l2"t, where a:. a: are Ule Maslov indices of charts of the canonical atlas on the curve i ' ( f ,  E )  
(see 1261 for details). 
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coordinates ( p p ,  p E .  p,z) .  This fact is general for stable closed trajectories of multi- 
dimensional Hamiltonian systems, when these trajectories are ‘well enough’ embedded into 
the phase space. This problem and the relationship between a complex germ index and the 
geomehic properties of the Maslov index in the semiclassical Gutzwiller trace formula 17-91 
have been widely studied (see, e.g., [3&39]) and will be considered in a future paper. 

Second, let us note that the second quantization condition (3.5) of the family 
[ A z ( I ,  E), r3(A2(1, E))] along the cycle y p ,  has the same form as the semiclassical 
quantization formula of stable orbits that was obtained in [40], by expanding the amplitude 
of each trajectory into a geometric series in the Gutzwiller trace formula. A quantization 
condition similar to that in 1401 is contained, as a particular case (k = l), in the quantization 
conditions of Bohr-Sommerfeld type for families of k-dimensional isotropic manifolds hk, 
with complex germs rn(Ak) ,  from the complex WKB method given in [lo]. Moreover, the 
quantization condition obtained there for stable closed phase curves includes the case when 
focal points are presentt. It is worth noting also that the complex WKB method and its 
results (see, e.g., [ IO ,  1 I], etc) are mathematically rigorously established. 
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Appendix 

Below we present the results of computation according to the scheme given above with 
accuracy O(&, ES + 0. To do this it  is convenient to pass to dimensionless variables: 
the coordinate x becomes p = axx  and the reduced spectral parameter becomes 
E = k w , ( i  + Q/Z; I is equal to [ i i , (11 >> I. In particular in this case equation (4.1) 
takes the following form 

For the solution X(t,  f , 1 .  E S )  of equation (U), perturbation theory gives us the expansions 
of the amplitude and frequency of nonlinear oscillations in the form: 

X(t,  E ,  1, E S )  = XO(W(ES)t, E ,  I )  t ESXI(O(&S)t, P, I )  + O(Ei) 

@ ( E d  = w; +&SO,” + O(Ei) (A.2) 
where Xo and X I  are the following functions, 2n-periodic with respect to r = a(&&: 

~ o ( s , ~ ’ , r ) = ~ ( e + u s i n r ) ‘ / *  i 2 1 1 1  (A.3) 

x t ( r ,  i,l) = -2 axo(r ,  E, I )  1‘ axo(r ,  6, I )  F(?)dt 
ar  ad 

(A.4) 
0; = W H  ai = W H W ;  

t For closed geodesics without focal points on a compact Riemann manifold, similar quantization conditions were 
obtained in 1411 for the first time. 
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where L(k) and K(k)  are the complete elliptic integrals of the second and first kind 
respectively; k = k(%, 1 )  = (2u/(% + a))’” and a = (@ - 12) ’ /2 .  Let us substitute these 
formulae into (2.16). We then find the expansion for the variable frequency Q(t, h, 1, E ~ )  

in series of ES as ES + 0 

n(f, b, 1,  Es)  = @ ( U ( E s ) t ,  d, 1 )  + &saf(U(&s)f,  E,[) + O(Ei) (A.6) 

where the frequencies S2: and m CZf are 2n-periodic in the first argument: 

Q,”(r, E, I )  = ye:(mXi(r ,  E ,  I ) ) - ’  
nf(r, E ,  I )  = 3 y e ~ ~ l ( r .  h,I)(mx,4(r, E ,  I ) ) - ’ .  

For OH + 00, the averaging method for the Hill equation (2.16) with variable frequency 
(A.6) gives the following expansion for the Floquet exponents B ( I ,  h): 

B(I ,  %)/k = ./FsQ,I(E, 1 )  + & y f i C Y z ( E ,  1 )  + O ( 4 )  (A.7) 

For the integral on the left-hand side of (A. 1) we find, to order O ( E ~ ) ,  ES -+ 0 

(A.lO) 

where 

J ~ ( B ,  1 )  = n(h - I I I ) /Z J I ( E ,  I )  = f i ~ ( k ) / J i  + a .  

From (A.1). (A.7)-(A.10), we obtain the following approximate (modulo O(&:)) equation 
for the reduced energy 

&(E, 1 )  + E s J i ( e ,  1 )  = J I [ n p  + (U + f ) ( l  + fi(&;’Q’i(E,I) + Ei’ZCtz(h, l ) ) ) ]  

With the same accuracy O ( E ~ ) ,  ES -+ 0, its solution has the form 

= &,,,,vfi, E S )  
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