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Abstract. On the basis of the complex WKB method, new spectral series for perturbed states
of an ‘anisotropic’ hydrogen atom, taking into account the electron’s spin polarization in a
homogeneous magnetic field are constructed, These series correspond to conditionally periodic
motions of a classical electron in the plane orthogenal to the field direction. The semiciassical
wavefunctions are regular in the entire configuration space including the focal points and have
the ‘superscar® properties near the domain of classical motion, i.e. near the projection of stable
two-dimensional Lagrangian tori on the configuration space. Both for Schrddinger and Pauli
operators the analytical description of the semiclassical wavefunctions ‘superscar’ structuse is
obtained. This structure is non-uniform with respect to the space coordinates and has singularities
with respect to the parameter &, # — 0, near focal points. In the limit case of strong magnetic
fields explicit analytical formulae for the semiclassical energy levels are obtained.

1. Statement of the problem

We consider the following spectral problem for the Pauli operator with spin—orbit interaction
[1]
H¥ = ET ¥ e LR, yxC? (T = (T, T,)) (1.1)

x,¥.2

where the quantum Hamiltonian has the form
ﬁp = ﬁs + i\/s---f

" 1/ . e \2 e
H=— (-mv - EA) + Vo (x, v, 2) V) = ———=— y>Q

Voo = %(o‘, H) -~ 4%’2%(5 {—mv - %A) x E) (1.2)

y is the parameter of anisotropy of the scalar potential V), (g), ¢ = (x,y,2). 0 = —e, ¢
is the charge of the ¢lectron, 4 = %Ho(wy,x, 0) is the vector potential of homogeneous
magnetic field, Vi_s is the operator of interaction between the spin and the external field,
o = (0, 02, 03) are the Pauli matrices, e = —VV, (g), H = V x A. For y = 1 problem
(1.1)~(1.2) is the anomalous Zeeman effect problem [1].
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The purpose of this paper is to obtain information on individual eigenvalues and
eigenfunctions (spectral series) of problem (1.1}-(1.2) in the semiclassical approximation
(as 2 — 0) in the widest range of classical parameters y and Hy, including the intermediate
domain of magnetic field values (108-10' G). This is the most difficult case for study
by other methods, such as regular perturbation theory and its various modifications [2-
6], because in this domain, as ¥ ~ 1, the magnetic and Coulomb interactions are of the
same order. The semiclassical approximation based on the standard multidimensional EBK—
WwxB-Maslov method cannot be applied here, because the corresponding three-dimensional
classical system

F.’ = _'VqHs(p; Q) q = VpHs(P, q}
(P =P Py P) ER g =(x,5,2) €R}) (1.3)

with Hamiltonian

1 2
H=Hp,q)= 53— (p—24) + V(@) (1.4)

is only ‘partially’ integrable. Due to the axial symmetry of the electromagnetic field,
system (1.3)—{1.4) has only one motion integral additional to the energy. This integral is
the projection I = xp, — yp, of the orbital momentum onto the axis z.

Nevertheless this non integrable system (with one cyclic variable) permits special
families of invariant (with respect to Hamiitonian dynamics (1.3)) Lagrangian tori AF,
their dimension £ being less than the dimension of configuration space Rz.

The existence of such families in the phase space of the classical system is a result of
its symmetries; the continuous axial symmetry generates the family of closed phase orbits
AY(I) (cf part ) corresponding to the stationary rotation or relative equilibria of the system
on the reduced phase space [7]; the discrete symmetry of Hamiltonian (1.4) with respect to
the canonical change of variables z = —z, p, = —p, generates the family A%Z(J, £), of
two-dimensional isotropic tori, lying in the vicinity of A!(f) (see figure 1); E is the energy
of the system. The projections D!(7) and DZ({, E) of these tori onto the configuration
space lie in the plane z = 0, orthogonal to the magnetic field H.

When invariant families of isotropic tori A*, of less than full dimension (k < ), exist in
the phase space of a classical n-dimensional system in the region of its regular (non chaotic)
motion, we can carry out the basic idea of semiclassical gquantization, i.e. to establish a
correspondence between quantum and classical objects. In other words, we can associate
this family of invariant tori with semiclassical spectral series (quasimodes)—sequences
of asymptotic as A — 0 eigenvalues and eigenfunctions of the quantum Hamiltonian.
A mathematically rigorous variant of semiclassical quantization of isotropic tori (small
dimensional Lagrangian) is the complex WKB method. It is based on Maslov's complex
germ theory [8,9] and was developed in [10-12] both for scalar and matrix Hamiltonians.
A complex germ is a geometric object that determines (together with the isotropic torus)
the complex part of the wavefunction phase. The existence conditions of this object are
similar to the conditions of orbital stability (in the linear approximation) for isotropic tori.
The complex germ construction is connected with special complex solutions of a linear
Hamiltonian system (system in variations). This system is the linearization of the initial
Hamiltonian system in the vicinity of the invariant isotropic torus.

In part 1 [13] we quantized a family of closed phase orbits A’(/) by this method, Here
we construct spectral series associated with the family of two-dimensional isotropic tori
A%(I, E) for the same quantum problem (1.1)-{1.2). This is a non-trivial problem because
these tori have focal points (which form caustics; see figure 1) in the radial variable. Hence
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Figure 1. Quantized invariant objects in phase space RS ,: A!(7), closed phase curve; A(7, E),
two-dimensional Lagrangian (isotropic) torus; Rx, radial turning points; £} = S_{_ S, caustics;
D2(I, E), projection of A%(f, £} on configuration space R3 in the plane z = 0,

(as in the full dimensional case (k = #) in the real wkB method), singularities of the
wavefunction arise in the vicinity of such points.

The main result of this part of the work is as follows, In sections 2-6 for problem (1.1)-
(1.2) we construct new semiclassical spectral series, i.e. sequences of asymptotic as i — 0
eigenfunctions ¥, .(g,%) and eigenvalues E, (h), corresponding to the conditionally
periodic two-frequency motion of the classical electron in the plane z = 0, orthogonal
to the field K. Here n = (1), ns, n3), n; are integer numbers, { = =1 is the electron
spin. The wavefunctions obtained are regular in the entire configuration space (including
focal points) and have the ‘superscarring’ property (cf [13]), i.e. there is an accumulation of
density in the coardinate space near the two-dimensional domain D2(/, E) of the classical
motion of the electron in the plane z = 0. In section 6, using the general formulae from
[10-12], the structure of superscars of serniclassical wavefunctions, associated with the
family of stable tori A*({, E) is investigated. This structure is non uniform with respect to
the space coordinates and possesses singularities with respect to the parameter f, # — 0,
near the focal points. Let us remark that for unstable periodic orbits a semiclassical theory
of the scar phenomenon for semiclassical wavefunctions (which was discovered by Heller
[14]) has been constructed in configuration space by Bogomolny [15) and in phase space
by Berry {16] {see also Robnik [17]).

In section 7 explicit analytic formulae for semiclassical energy levels in the limit case
of strong (Hy — o0) magnetic fields and for any value of the anisotropy parameter
v > 0 are presented. We obtain these formulae in the form of a regular expansion in
the parameter & = /2 ~ H; '* « 1. Here ¢ = ay/ap as the ratio of the Larmor radius
ap = (chfeoHp)'/? to the electron’s Bohr radius ap = #%/mel.

The possibility of carrying out this investigation is due to the following fact. From the
analytical point of view the complex WKB method reduces the construction of the germ
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asymptotics for the quantum problem (1.1)~(1.2) to the integration of three systems of
ordinary differential equations: the nonlinear Hamiltonian system (1.3) (to find isoiropic
tori A%(/, E)), the corresponding linear Hamiltonian system in variations (to construct the
complex germ) and a linear system—the polarization equation—to describe the electron’s
spin evolution.

Hence, to analyse the semiclassical energy level dependence on the other classical
parameters of the system, we can use well developed asymptotic methods, In particular, to
study the semiclassical energy levels in limit cases of the magnetic field value Hp, we use
the Poincaré-Linstedt method [18] for the nonlinear equations of motion, the averaging
method for linear Hamilton systems with high frequency parametric perturbation [19],
for the equation in variations, and the standard perturbation theory for the electron’s spin
polarization equation.

As is known ([20-24]), for spectral problems with matrix Hamiltonians such as (1.1)—
(1.2), the orbital (g = (x, y,z)) and spin (£ = 1) variables can be separated up to O(h%),
fi = 0 in the WKB approximation. The same idea is valid for the complex WKB method
[12]. The semiclassical spectral series of the initial spectral problem have the following
structure {outside the neighbourhood of focal points)

W, (g, k) = We(q.7) f; (q) Eng(h) = ExRY + Ry + O  (L5)
(E.(R), ¥, (g, k) is the semiclassical spectral series of the scalar Schrédinger operator )
HWe(g,m) = EVe(g,h)  We(g, k) e L(R) (16)
2
~ e

H—i(ihv—i[H ])z—— (N
S—Em 2c q /x2+y2+yz2 )

(E is the spectral parameter), ¢ = (x,y,z) and g, fy(g) is a solution of the spectral
problem for the polarization equation on the invariant torus A%(7, E) = {g = Q(11, 0), p =

P(11, 1), 0 € 1; <2x}, 7; being the angular coordinates on the torus;

.d
—1—,f; + Oacfy = we fr f t AF > CR (1.8)

Here f; = f;(g = Q(71, 12)) and d/d¢ is the differentiation along the trajectories of system
(1.3} and the polarization matrix IT has the form

(=41 1 .
1= 2—m-5<a',H(q) - -2-m-z[q b E]). (1.9)

In the case of the Dirac operator a similar reduction of the initial spectral problem to solve
a scalar problem of type (1.6) and the corresponding polarization equation for the electron
spin wag performed in [25, 26]. For problem (1.1}—(1.2} obviously, matrix (1.9) is the limit
of the corresponding polarization matrix in [26] (see formula (5.132)) as 8 = v/c — 0,
where v is the speed of the electron.

Thus, we have to solve two auxiliary problems. The first of them (the spectral problem
for the Schrédinger equation) has an original scientific meaning by itself.

2. Construction of the family of two-dimensional isotropic tori A*(X, E) with the
complex germ (AZ(1, EY)

In cylindrical coordinates p, z, ¢ the Hamiltonian function H; corresponding to operator
(1.7) has the form
p? 2 &2
= Hy(p, Pp ) = 7= + + gmop’ — —=——= + jOn Py Q.1
2m,o2 gy m )
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The variables p,, p; and p, are canonically conjugate {o the variables p, z, p{mod2x);
oy = egHo/mc is the cyclotron frequency, e = —eg, ¢g > 0 is the charge and m is the
mass of the electron.

In a Hamiltonian system with a cyclic (angular) variable one can always single out a
special family of closed trajectories A'(J)—<ircles, which are stationary motions or relative
equilibrium states of the system in reduced phase space with coordinates g, z, p,, p;. As
shown in part I ([13]), the explicit expression for A!(Z} can be given when the values of
the energy interval E and the momentum projection integral /(I = p,) are related by the
following formula

E =a(l) = wgl /2 — &/Q2R(I)} + mw} R2(1) /4. (2.2)
Here Ry(I) is a critical point of the ‘effective” potential

Vio, 2) = I2/Q2mp®) + mw} p*/8 — &(p® + y2%) V> (2.3)
in the plane z = 0. Ro(I) is the solution of the equation

m*wl RS /4 + egmRo = I, (2.4)

Let us fix the values of the motion integrals of energy E, E = Ey and of momentum p,,
P, = I, so that the point (Jo, Eg) does not lie on the bifurcation curve SV ={{l,E),E=
a()} (see [7] and {13]). Let us also consider the intersection of the coordinate plane
M, = {(p, q), p; = 0, z = 0} with the level Mg, = {(p, g), H;,(p, ¢) = Eqo} of the reduced
Hamiltonian function

Hiy(p,q) = H(p, I, q) = p>/2m + 2mp?/2m + Vi, (p, 2) + wn Jo/2

in the reduced phase space R2 x RZ.
The intersection Mg, N I1; defines the closed curve

Al(lo, Eo) = {(p. q), pL/2m + Vi, (p,0) + wnly/2 = Eo, p, =z =0). (2.5)
The product
Al(Io, Eo) % §'(Io) = A*(Jy, Eo) (2.6)

in which S'(Z) = {(py, ¥), P, = I, @ € [0,27)} is a circle (see figure 2) gives a two-
dimensional Lagrangian torus A%(Jy. Eq) in the initial phase space Rg x R;. The torus
A%(ly, Ey) is invariant with respect to the phase flow g}, of the Hamiltonian system (1.3)-
(1.4). This fact follows from the integrability of the Hamiltonian system (1.3) in the plane
1, and from the relations 8H f8p {2 = 0H/8z|p2 = 0.

The motion of the Hamiltonian system (1.3) along the torus A%({g, Ep) is conditionally
periodic with frequencies

wi(ly, Eo) = 22T (1, Eo)

R+(lo,Eo)(2 ( wnly

—1/2
T1 (ID; EO) =2 - EO i an(p»o))) d,O (27)

m 2

aV

R_(Iy, En)
: T (%0, Eo) )
w2(lo, Eo) =T (fo, Eo)fu 3}-(3{(@11 + 11, Ep, fp) dr

where Ryi(lp, Eg) are the radial focal points of the effective potential (2.3) with z = O
Vi(2,0) = Ey— wylo/2; X (w2 + 11, Eo, Iy) = R(¢) is the solution of the ‘radial” Newton
equation

mR + 8V, (R,0/3R =0 (2.8)
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4 ,ﬁ(p)

\\
~1yip)

P2 Po(n) wyl

ANIL E): =+ ViX(@),0) = E—- —— 0L <2n
) p=X (=) R.+3KpSRL-5 8l
(P} 1 po = Pl1) @ <n < +ed)
P,,A
I
2n _-;T

Figure 2. Projection of the family of invariant two-dimensional Lagrangian tori AZ(J, E) =
AI(I) % $'(f) in the plane z = p, = 0; R are the radial tuming points,

so that in coordinates of the phase space Rg'q the periodicity condition for the motion on
the torus A? (2.6) has the formf

P 'PI (Pp = P(Q)]t + rl) mﬂ)]x’(w]t + Tt Eﬁa ID)1 Po;a = IOr Pz = 0)!
g=0t={(p=Xt+1.Ey ), p=wit+n+wt+1)z=0 (2.9)

where T = (11, 72), 7; € [0; 27 { are angular coordinates on A2, 8(1y + 27) = 6(7}). Here
and below the derivative with respect to 7; is denoted by prime.

The projection D? of the torus A?(ly, Eo) on configuration space, i.e. the domain of
‘light” or ‘bright region’, is an annufus lying in the plane z = 0 (see figure 1)

= {(p.z,9), p € [R-{lo, Ep), Rs.(Jp, Eo)}, 2 =0, p € [0, 2m))}.

The boundary of D? is formed by two circles §! and S} with radii R_(Jy, Ep) and
R{(ly, Eg) respectively. This boundary is a caustic curve. It is the envelope of the family
of ‘rays’, ie. of the projections of the trajectories of Hamiltonian system (1.3), that fill
the torus A%(Iy, Ep) everywhere densely in configuration space. We naturally assume the
invariant Lagrangian torus A%(Jg, Eg) (2.6) to be non resonant (i.e. on the ring of integers the
frequencies @ {fq, Eg) and wa(ly, Ep) (2.7) are linearly independent). We also assume this
property to be valid in a certain neighbourhood U, g, C R} x RL of the point (fo, Eo) € L!
(see e.g. [7]).

Now we construct the complex germ r3(A%(J, E)) on the family of two-dimensional
Lagrangian tori A2(J, E). Consider the system in variations associated with (1.3} in the
vicinity of A? given in (2.6). This system has the following form

4 = H'"™| pea a=(w,2fw=3peCz=385eC? (2.10)

1 For the sake of simplicity we shall omit the dependence on the parameters £ and [/, wherever it does not cause
confusion.
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where the matrix in variations 7% is
Y — JazH - ( Hyp —qu)
an? Hpyp  Hpg Jsus
n=(p,q) €RS  p=(Pp, Py, P) 7 = (0,0, 2). (2.11)

Here J = (?
H¥ s calculated at thzﬁpoints of conditionally periedic motion (2.9) on the invariant tori
A? (2.6). Due to the axial symmetry, matrix (2.11) depends on the radial motion R(z) only.
Hence (2.10) is a system with T3 periodic coefficients.

For system (2.10) we find three linearly independent solutions a;{r, 1), £ = 1,2,3,
7 = (11, T2} € A?, satisfying the following conditions:

() a1(t, T) and ax(f, T} form a basis on the plane tangent to A? at the torus points
(P, 2¢) (2.9) and have the form

a{t, 1) = (3P; aQt) (P’(w;t + 1:'1), 0,0; X’(cult +71), 9'(&)1! -+ '!.'1), 0)'

_01) » (1 = ((8:))3x3), is the standard symplectic matrix (7). Matrix

oT :
ax(t, T) = (8P /312, 9Q,/30) = (0,0,0;0,1,0)' 2.12)
(ii) all three solutions are skew-orthogonal to each other
la;, ax}(t, 7)) = (a;, Jar)ms =0 LHk=1,23 (2.13)
(iif) the solution as(¢, T} is complex and satisfies the dissipativity condition [9, 12]
{as, d3}(t, 7} = 2i (2.14)

{(here and below the bar over a vector means complex conjugation). It follows from (2.12)-
(2.14) that the vector gs(?, T) can have the following form

as(t, 7) = (0,0, w(t, 7),0,0, x(z, T)). : (2.15)
Then it is easy to verify that a3(z, t) (2.15) is a solution of the system in variations (2.10),
when w = my, where x is a complex solution of the following Hill equation (the equation
of an oscillator with variable periodic frequency)

P10y =0  QU+T)=aQ) 2.16)
2
() = V12D =% ves = it + 11, 1, E).

2m 32 |,gprpy MR mXwt+T,LE)
Here R(t) = X{(w? + 71, I, E) is the periodic solution of the Newton equation (2.8), V; is
the effective potential (2.3) and (&, /, E) is a 2m-periodic function of £.

As was mentioned above, the existence of the complex germ r"(A*) is equivalent to the
condition of orbital stability of the isotropic torus A*. For a two-dimensional isotropic torus
A? (2.6), lying in the four-dimensional plane z = p, = 0 of the classical phase space ]Rp 2
this condition means that the torus is stable with respect to the small deviations 8p, = w,
8z = x transversal to A%(I, E). Hence we require all the solutions of the Hill equation
(2.16) to be bounded for t € (—oo, +00). For a fixed value of the magnetic field Hy, let
us denote the domain of stability of (2.16) by V(Hp) € Uy, g,y. Then according to Floquet
theory (e.g. [18, 18]} a basis of solutions of this equation consists of functions x and i such
that

x(t+ T, 1, E) =By, 1, E) teR (2.17)

where the characteristic exponent 8(/, E) is real and does not depend on the point on the
torus A%(/, E). Normalizing the solution x by the condition m{¥ ¥ — X ¥ x) = 2i we obtain
the dissipativity condition (2.14) for the vector as(t, 7).
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Note. Due to the explicit form of the variable frequency £2(#), the stable solution (2.17)
of equation (2.16), can be represented in the following form: x(¢) = Z{wt + 7, I, E).
Obviously here Z(zy, I, E) is a stable solution of the eguation

W} d2Zfdr? + Q(1))Z =0 (2.18)

where Q(t; +2m) = fz(n), Z(n + 27, 1, E) = exp{ip({, E)}Z(w, I, E).

At any pomt T = (1, 72) € A’ we consider the three-dimensional complex plane

) = {ZJ,_ rj(r)a,,ozj € C}, where r;(r) = qj(t, t}lt=0, j = 1,2,3. According to

(2.12)—(2.14) this plane is Lagrangian, dissipative and contains the plane tangent to A? at
the point z. The family of planes r3(z), T € A? defines the complex germ r3(A%(J, E))
on the invariant two-dimensional isotropic torus A2(7, E) for (I, E) € V(Hy).

The pair [AX(I, E),r3(A%(1,E))] plays a key role in the construction of the
semiclassical spectral series for problem (1.1)-(1.2) by the complex WKB method.

3. Quantization conditions for the family of Lagrangian tori A%(J, E) with the
complex germ r° (AT, E))

General quantization conditions of Bohr—Sommerfeld type for families of isotropic tori with
complex germ were obtained in [10-12]. Since the dimension of these tori is rigorously
less than the dimension of configuration space, instead of the Maslov index for tori of full
dimension, a new topological characteristic appears in the quantization conditions. These
characteristics are the indices ﬁ} of the complex germ along the basis cycles of the isotropic
tori. Let us calculate these characteristics in the considered case for two basis cycles,
¥p = {12 = const, 0 € 7y < 2r} and ¥, = {71 = const, 0 € 72 < 27}, of the torus A%(J, E)
(see figure 1). To do this we compose 3 X 3 matrices B(z) and C(r) of ‘impulse’ and
‘coordinate’ components of the vectors r;(7) = a; (¢, V=0, j = 1,2, 3 that form a basis
on the plane r3(t), T € A%, E). If we recall (2.12), (2.15) and (2.18), we get

P(m) O 0 X)) #(m) 0
B(t):( 0 0 0 ) cm:( 0 1 0 ) (3.1)
0 0 mwZ'(m) 0 0 Z(w)

The 2m-periodic functions P(r) and X (r;) determine the closed curve AN, E) (see
figure 2), and Z(ry) is a stable solution of the Hill equation (2.18). The complex germ
indices ,BJ. along the basis cycles y;, j = 1,2 of the torus AL EYy = Yor V2 = Vo)
are defined as the complete increment of the arpument of the determinant of the complex
non-singular matrix B(t) +iC(z)

B; = Argdet(B(t) + iC(z))ly,. (3.2)
Since the matrices B(t)} and C(t) do not depend on 72, ﬁz = ﬁ,,, = 0. For the cycle y,,
taking into account (3.1) we have
Bi = By, = Arg(P’'(1) + X' (1)) (men Z'(11) +1Z(w))F = 2% + (I, E) (3.3)

where B(JI, E) is the characteristic exponent of the Floquet solution (2.17). In (3.3) we used
the inequalities Z{z1) # 0, Im{Z'(7;)/Z(1;)} > 0, that are implied by the normalization
condition of the solution x (7).
Thus the quantization conditions for the family AZ*(J, E) with complex germ
r3(A%(1, E)) are (cf [10])
I

2mh AR (], E)
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1 (B, E)+2m) I
. pdg=n,+ 2T, Ly y—o,1,2,... (35)
2nh }’,,EAz(I,E) q s 27 2

n, being natural numbers, [ integers, [ = 0, =1,, ..., { =), {{{7)] = o, n, = n,(R) —
oc as i — 0. We have chosen the basis cycles ¥, and y, such that the motion along them
implies only the change in one coordinate, ¢ or p. Condition (3.4) gives [ = lh. The
second condition gives the semiclassical energy levels E = E; , ,(h) for the Schrodinger
operator (1.7).

4. Semiclassical spectral series for the Schridinger operator

The quantization condition (3.3) can be rewritten in the following form

R (1.E) wul 1/2
V2m [q - (E - —g— -~ v;(p,O)) 4ol r=in
(],

= wh (np+(%£)+l) (u+%)). 4.1
This condition determines the spectral parameter E+E; ,, , (7); here Ri(/, E) are the radial
‘turning’ points, i.e., zeros of the integrand in the left-hand part of condition (4.1}. If the
numbers |{{(fr)] = 00 and n, = n,(R) — oo, i — O are related to the parameter 7 by the
following conditions

IR — Iy ny ()R — (2)"! ﬁ pdg E—=>0 (4.2)

Ya€Al(ly, Eo}

then the semiclassical series of eigenvalues Ei.,.,(R) for the Schrédinger operator
determined by (4.1) are associated with the motion of the classical system (1.3) along
the invariant torus A2(Jy, Eg) (2.6) in the limit as & — 0, (f, Eo) & L.

Thus for all values of Hp, our method reduces the calculation of the semiclassical energy
spectra, related to the regular quasiperiodic motion of the electron in the plane z = 0, to
solving the algebraic equation (4.1), with the values of E and 7 in the stability domain
U}, g, (Ho) of the Hill equation (2.16).

5. The polarization equation {spin correction)

The polarization matrix (1.9) for the family A%(Z, £) is a matrix with Ty-periodic elements
that can be calcelated as in [26]:

e el o . 1 0
Tt a2z,5) = e (Ho + __chR3(:)) 63 g3 = (0 _1) .

The spectral problem (1.8) for the two-component spinor f; on A%(7, E) has the form
~idf, /dt + e(2me) ™ (Hy + el [2meR¥ ()63, = po f;
where the differentiation operator d/dr along the trajectories (2.9} has the form
d/dt|az = (&, Vi) + (D, V) = 93/3¢ + p3/dp + p,3/3p,.
It is conmvenient 1o pass to the global coordinate 7; mod 27, on the curve A'(J, E); then
due to (2.9): p8/9p + p,3/3p, = w,3/37;. Consequently, in global coordinates (zy, 72}
on A%(I, E) we obtain the spectral problem
—iwy(I, E)3/872 —iwn (I, E)3/371 + a(t)o|f;) = w1 f;)
=21 fm+2m, ) = fi(t, ) fo(t, 0+ 2m) = fi{(n, w). (3.1}
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Here
a{ty) =[Ho + eol/(2m6X3(1'1 B, INeo/2me. (5.2)

We take (5.1) to a one-dimensional spectral problem on the circle through the transformation
fr (11, 1) = explikara}w; (71), k2 € Z (separation of variables):

—iw dv; /8T + a(t1)Gsvy = (i — kawn) vy v (T +27) = v(7) ko eZ. (5.3)
From here we get

v (1) = v; exp{iky 7y }exp{igg(mi )}

1 1 (= W
g(n)=-w—[[n5 [o a(n) dr; - fo a(ru)drx]

1 2=
e = ko + kyay 4+ i—ﬂ-f[ a(t)dr ki kheZ (5.4)
[

where the vector v; is constant; vy = (1,0)%, v, = (0, 1)'. Thus we have proved that
the eigenfunctions and eigenvalues of the spectral problem (5.1) have the form

1 2 k4]
f;skhkﬂ(?-'t, ;) =expli(hit + kam2)] exp (i I:Ezr—rl fo a(z))dn — _/,; a(tr) dl‘l] C/wl) Ur

1 i
ugkl.kz) = ki + kawp + CE,[ a(r ) drn ki,ka e Z ¢ =1, (5.5)
0

Without loss of generality (sge the remark in the next section} let us put ky =k = 0
in (5.5). Then we obtain the following spectral series (E,, V,), associated with the family
A%(I, E) for the Pauli operator (1.2):

Epp,wiB) = Epp, () + ié’ fﬂx £ (He + ixs(fh E, I)|i=th e=E2 ) dr
e 27 Jy 2me 2me Ty
+0(R?) (5.6)
where £ ,, (%) is the spectral series for the Schrédinger operator (1.7).

6. Semiclassical wavefunctions ‘superscarred’ by the family of two-dimensional
Lagrangian tori A%(I, E) with complex germ r(AX(I, E))

In this section we associate the family [AZ(J, E),r3 (A2, EN), (ILE) € V(Hp)
quantized by conditions (3.4)—(3.5) with the semiclassical wavefunctions corresponding
to semiclassical energy levels £, ,,.(R) (4.1) (for the Schridinger operator (1.7)) and
Eyn,v;(h) (5.6) (for the initial problem (1.1)=(1.2)). In both cases these functions are
determined by the Maslov canonical operator with cemplex phase [9-12] on a special
function ¢ on the torus A%(J, E):

(i) for the scalar problem (the Schrddinger operator)

P(r, ) =1=> W, (g, h) = (Rinsg, 5oz, ey 1@ B)
[=Ih  E=E,.® 6.1)

(1i) for the vector problem (the Pauli operator)
$(1),72) = fy (11, @) = v €55 = By (g, 1) = (Bpae o Fr (v, )90 )

= v (Riarg, py.are, met 50 g, 7)
I=1h  E=Ep,®  ¢==%I 62)
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The electron spin polarization vector v; € C? does not depend on the orbital coordinates
gc ]Rg. Function g was obtained in (5.4). The properties of (6.1}+6.2) are:

(i} functions (6.1) and (6.2) are smooth in the entire configuration space including the
neighbourhoods of caustics (see section 2 and figure 1),

(i) they satisfy the spectral problems (1.1)~(1.2) and (1.6) up to O(%*%),n — 0.
Namely, substituting (6.1) and (6.2) in (1.1) and (1.6) respectively we obtain a residue of
order ﬁm,h — 0 in the L, norm,

(iii) up to O%'/%), i — O these functions form an asymptotic complete orthonormal set
of states (the index -+ means complex conjugation)

fd3qJ§lIf,TtPnr =8 +0G')  g=(0.0.0) JT=0p

fd3q@m;€@n.g. = Spneere + O c=%ln=(,n,v).

For details about the construction of the Maslov canonical operator in the general case
see [8~10] and [12,26] for the type of case considered here. We present only the final
answer; explicit formulae for semiclassical wavefunctions (6.1), (6.2) for any g € Rg.
Properties (i)—(iii) can be verified by direct calculations as in [26].

Let us consider the semiclassical wavefunctions (6.1) for the Schrédinger operator. We
consider three regions (see figure 3). The first is called the ‘shadow’ region and is situated
outside a neighbourhood of the annulus R_ -4 £ p € R34, § > 0. Here the wavefunction
equals O(A*°), i = 0. The second region is the interior of the annulus R_+3 £ p € Ry —4.
‘We call it the bright region or domain of light. There the asymptotic wavefunctions have
the form

W=, (0, 0,2, 8) = Ne'P 3~ Walp, 2, R)

+
, c* /RISt
= Ne* - [—<I> (t1, z)] 6.3)
2 75 | aaxensaana > S
E=El.np.v(ﬁ)

wheret S(r;) is the classical action along the closed curve A'(J, E) (2.5) directed
counterclockwise (see figure 2)

ST} = fo P{t)dX(n). 64)
T
The functions tli(p) are smooth (outside the turning points) branches of the equation
p=X(t) R_+8g p < Ry -4 (6.5)
Ou(n1, 2) = () 2(1/V2) 12 ()| 7P expl{—i(v + })ArgZ (1)}
x expliQ(z)z* /(2R)} Hy (z/ (VR Z(m1)])) v=012... (6.6}

where H, are the Hermite polynomials. The complex ‘frequency’ $2(ty) is determined by
the stable solution Z(7;) of the Hill equation (2.18)

_ meZ’(r;) ' _ d_Z _ 1
Q(n) = —Z(Tl) (Z () = drl) ImQ(n) = ZOP >0 6.7)

{(ArgZ(7;))!/2 is the continuous branch of the square root of the argument of Z(7;) # O,
0 < 71 € 27 at a fixed point 1:10. The constanis C;,E equal C,';' =1, Cf = exp(—in/2). The

t For simplicity here and below we omit the dependence on the parameters / and E,
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factors @,(71, z) in (6.3) are the Fock states generated by the squeezed state ©,_p(7;,2) =
®o (see [27,28]) of the non stationary (with respect to the ‘intrinsic’ time 7;) harmonic
oscillator with 2 -periodic variable frequency Q(r;) (cf (2.16))

— iR 3Po/ 8T = (— (R /2m)8% /322 + $(x1)22/2) @y
Dy(11,2) = WA@Y (1) @o(T1, 2)

where 41(1))} = (2h)"V[mw, Z'(1,)(—ihd/8z) + Z(7))z] is a dynamical symmetry of
equation (6.8).

(6.8)

Bright region

Y011}
Shadow region

Y-0th=)

Coushics
i y=0(pH6)

Figure 3. The structure of the support of individual ‘superscarred’ quantum states in the plane
= Q.

Finally, the third domain is the neighbourhood of the caustics p = Ry, 0 € ¢ < 2m,
z = 0. In the vicinity of the points Ry = X (r,‘*“}, dX/dn (rf) = 0, which are singular with
respect to the projection of A%(/, E) on configuration space, we use (as in the standard
WKB-Maslov method) the momentum representation by means of the Fourier transform
Forsp, but only with respect to the radial coordinate p. Let us denote the semiclassical
wavefunction here (o ~ R:) as W=, Then
r:=r.*(pp))

exp{(i/A)S(n)}ex(n1)
(|dP fdry () |)!/2

N«.a""i"(.’,‘i ex (T} Pu(n1, 2) exp{(i/B)(popo — _/:rf X(n}dP(m))}

V= (7" (8V1/3p)(X (m), )Y 172

P,(11,2)

In,,.u(P @. 2, R} = Ne"‘f'Ci}'p,_,pp (

r=n 69)
Tl=f[= (pp)

E= .ln,-, u(®)

T £ Pp) are the smooth branches of the solution of equauon Pp = P(t1}) = mw1 X'(11), in
a small ne:ghbourhood where |1; — r, | <&(f) « It tf: P(rl":) = 0 (see ﬁgure 2). The
functions ei(r] ) are smooth and finite (cut-off functlons) ei(rl y=tif [ — 1‘1 | <& but
ex(r1) = 0 if |7y — | > &. The constants C¥ equal Cf =e™™2C; =¢7'7,

In the formulae (6.3} and (6.9) N plays the role of a normallzatmn constant: N =
(2T m¥*p11)=1/2 where T is the period of radial oscillations (2.7).

Similar formulae are valid for the semiclassical wavefunctions of the Pauli operator. Tt
follows from (6.2) that ¥, , ~ v, = const and the scalar part of the asymptotic solution at
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all points g € IR;?, is determined by the next substitutions in formulae (6.3} and (6.9): (g(7)
was defined in {5.4))

S(t1) > S(zy) + hig(m) S(zy) = S(m) + htg(m) ¢ ==l

Remark, The considered case &y = k; = © does not limit the generality of our
considerations since, if we put k; # 0, &y # 0 in (5.5), then the series of semiclassical
energy levels (up to O(%?), & — 0) suffer only a renumeration of the orbital / and radial
n, quantum numbers:

2
Etnyui ®) +7 ) 03k = Ertyn ek e () + OF) ko — 0.
j=t
In this case the semiclassical eigenfunctions (up to O(R), & — 0) do not change:
Wity npthvg = ‘I’J,n,,,u.; + OR) -0

We have taken into account the fact that the actual expansion parameters in this case are
the ‘large’ quantum numbers [{] 3> 1 and n, 3 1, which are related to the parameter #,
k — 0 by the conditions (4.2). In fact, selecting & 3 0, k1 5% 0, in formula (5.5) implies a
change in the oscillating exponents of wavefunction (6.2): ¥ > gil*+i)}? and

exp (%Sﬁ(P,E‘ I)) > exp(—ﬁi-si(P,EJ)'f"ifft(P))

respectively. Therefore, taking into consideration the fact that lka| <« I, |k] & 5, (as
A — 0) we obtain the estimates

il+e = &% (1 4 O(ka/ )i
= e"(1 + O("))n0

exp (%Si(p, E) +izﬁ(p))

E=El.nﬂ.u E=El+t2.np+k|.v

E=Eiptyinptip.r I=({{+h )R
= e ED L or=m(1+ Oa/1) + Ok1/ 1))t n, 1
— eblsi(anl.np.u}(I + O(ﬁ)) h — 0.

The last estimates were obtained using a Taylor expansion in powers of kz/! and k1 /n,,
together with the known formula 8S./8E (o, E, I) + t(p, E, I} =0 [29].

Analysis of formulae (6.1} and (6.2) show that the semiclassical wavefunctions
WUt (0, @, 2, B) are localized (2 — 0), in a neighbourhood of the bright region filled
by conditionally pericdic trajectories (2.9). Inside the annulus, functions ¥ oscillate in the
coordinates p and ¢ with frequency ~ 1/A and decrease exponentially in the coordinate z,
similarly to Gaussian packets with the frequency of quantum oscillations of the order A~'/2,
h — 0, determined by the zeros of the Hermite polynomials.

It is precisely in this sense that these semiclassical wavefunctions possess the
superscarring property in the coordinate space, near the projection of the torus A2, The
functions (6.2} for the Pauli operator (!.1) have the same property.

Quantum superscarring of the wavefunction is non-uniform with respect to the classical
motion along the coordinates p and z. The localization domain of probability density along
z (near z = 0) is determined by dispersion 0‘;‘: = h(Im Z(rl’h(p)))"' of the Gaussian packet
®,_o(11,2) (6.6): |z| < \/;;E ~ ok, B — 0. Then inside the ring R < p < Ry:
|W12(p, z) = O(1), but in the vicinity of the caustics S1, i.e. as p ~ R, the accumulation
of density is singular as i — 0: |W[*(Rs, z) ~ B~Y3, This structure of the quantum
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superscarring follows from the estimate for the integral in the right-hand part of (6.9); ¢f
[26], where it is shown that, in a small neighbourhood of the turning points, p — Ry ~ A3,
f — 0, the function (6.9) is the product of the standard Airy function with respect to o and
of ‘squeezed’ states ®,(7;, 2), as T = T (Ra).

For the model of external field considered it follows from [26] that, for p ~ Ry, the
semiclassical wavefunctions W=(p, ¢, z) (6.9) have the form

N elte CE . .
Y=o, p,2) = _ﬁTGF 25"58'”45’(?1*)/';’(7?)'_”2

X exp {%_ fol P(m)dX(m) + P(rf:)(p - Ri)] Al [D(r]i)%]

x (1, 2)

where the parameter 'r:f': determines the turning points Ry = X (rf"), X'(z¥y = 0,
Ai(x) is the standard Airy function, Ai(x) = 2r)~' [ expli(ex + £°/3)} d&, D(1)) =
P(n)/maa(ni)'? and a(n) = —(1/2m)(8V;/3p (X (1), O)*.

The qualitative behaviour of the probability density |¥|%(p, z) is displayed in figure 4,
where the superscar structure of the semiclassical wavefunctions is illustrated.

lqaq

Airy functions

—— R

. i

Figure 4. The qualitative behaviour of the density of ‘superscarred’ wavefunctions from (6.1);
R, are the radial turning points.

7. Enexgy spectrum in the strong magnetic field approximation

Let us assume that the magnetic field is so strong that the Bohr electron radius ag = %%/ me]
is much larger than the Larmour radius ag = (ch/eqHo)'/?. The condition ax < az holds
for values of the field starting with Hy ~ 4.7 x 10° G.
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7.1, The Schridinger operator

We obtain the asymptotic expansioni of the semiclassical energy spectrum £ ,, ,(R) in
half-integer powers of &5 = ay/ap < 1 from (4.1). The main difficulty is to calculate
the Floquet index S8(J, E) for the stable solution of the Hill equation (2.16). We use the
Poincaré-Lindstedt method to solve the Newton equation and the averaging method to
calculate the Floguet index.

In the zero approximation as sg — 0 (without taking into account the Coulomb
interaction in the plane z = 0), in strong homogeneous magnetic fields, the radial variable p
changes with high frequency wy = egHg/(mc) — 00, wgjwo = 1/6% > 1, where wy is the
characteristic frequency of the classical motion in the Coulomb field. This allows us, at the
second step in the calculation of B(/, E), to apply the results of the averaging method in the
theory of linear Hamiltonian systems with high frequency parametric perturbation (see [19]})
to (2.16), and to obtain the expansion of 8(J, E) in powers of ,/zg, &5 — 0. Supplementing
these computations with the standard expansion of the integral of motion (277%™} 55},” pdx)
as &5 — 0, from quantization condition (4.1) we can obtain the approximate equation for
the spectral parameter £, ., v(es, %), with accuracy O(Efg"), gs =+ 0, N=12,... fwe
solve this equation by regular perturbation theory, we shall find the finai representation of
the semiclassical energy levels, corresponding to the family A?(/, E), for strong fields. The
calculations according to this scheme are presented in the appendix.

Finally, in this approximation, the semiclassical energy spectrum Ej,, (%, &5) of the
Schrédinger operator (1.7}, associated with the two-dimensional quasiperiodic motion of
the classical eleciron over the invariant isofropic tori A%, E) (2.6) can be expanded with
respect to half-integer powers of the parameter £5 = ag fap € 1

Einyu (P 65) = qouhQnp + 1) +1+ y¥(1+20) + e§* By + £5E3 + O(6¥) + O,
(1.1)
E 5 J =0,1,2 are shown in formulae (A.11) of the appendix.

7.2. The spin correction
To obtain the spin correction we calculate (see (5.4)), using the expansions {A.3)}(A.4), the
integral
2
| x@ B g egdn
0

in powers of g5, €5 — 0. Up to O(g%) we obtain

2z
a [ X731, E, 1, e5)dry = 2maf + 2010265 + O(ed),
4]

where o is defined in (A.8) and &, in (A.D),
Finally, the series of semiclassical energy levels of problem (1.1)<(1.2) corresponding
to the family A%(J, E) (2.6) has the form

€ % (E"u))

£
Ei’,n,,.l?.i,‘(k) = El.np,u(ﬁs &)+ hs ("2# Hy + W @n)?

|14, 2B
o Eg)

T A similar expansion in ag" can be perfermed for weak fields. See [31]fory =1, Vies = 0.

) +0(ed) + Or?) (7.2)
Eo=2n, + {1+ (1+20). /7
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1=0,%1,%2,...,7,=0,1,2,...,v=0,1,2,..., { =1 and Ej,, ,(h, &) from (7.1),

8. Concluding remarks

(1) The spectral series constructed, related to the family of stable two-dimensional
Lagrangian tori A%(J, E) with complex germ r>(A%(I, E)), describe the perturbed states
of the system. These states are conditioned by the quick rotation of the electron (JI| 3> 1)
and its radial oscillation of large amplitude (n, }» 1) in the plane z = 0. The quantum
number v = 0, 1, 2, ... determines the amplitude of the small axial (with respect to the field
direction) oscillations: v & n,, v <€ |{|. We emphasize that, in contrast to the semiclassical
wavefunctions, the semiclassical energy levels E,(R) (4.1}, E,; (&) (5.6), n = ({,n,,v),
approximate the exact spectrum of problems (1.6) and (1.1) respectively, in the following
sense. In a neighbourhood of order R B — O of the level E,(R) of problem (1.6), there
exists an exact value (maybe not unique) of the spectral parameter Egyqq, such that

]Eexnct - En(h)f = 0@2) i~ 0.

The same estimation is valid for the semiclassical energy levels E,;, { = £1 of the
Pauli operator. This fact follows from a well known general proposition (see [20,30])
for the semiclassical asymptotics of a spectral problem when the asymptotic (as # — 0)
wavefunction possesses properties (i}—(ii) (see section 6).

(2) Taking hn, = Ok}, » — 0 (i.e. considering n, to be small, n, ~ 1) in (4.1), (5.6),
(7.1}, (7.2), (8.1), (8.2} and making the substitutions n, > v, v — v3, v, w2 =0,1,2,,.,
we obtain the semiclassical energy spectrum corresponding to the motion of an electron
along an equilibrium circle (see part T [13]).

(3) For the spectral problem (1.1)}-(1.2), without taking into account the electron spin
(V,_g = 0), formulae (4.1) and (5.6) for the semiclassical spectral series for the Schrédinger
operator transform into the results of [31] if ¥ = 1, and of [32] for the anisotropic Kepler
problem if ¥ #£ 1, Ho =0. As y = 1, Hy = 0, we obtain from (4.1) the exact spectrum
of the hydrogen atom. Its main quantum number » equais n, + || +2v + 1. As V, =0,
g; = 0, we obtain from (7.1} the Landau levels of an electron in an homogeneous magnetic
field, and the level number N equals r, + v + ( -+ |I])/2. Here the semiclassical quantum
numbers n,, {, v enumerate the quantized two-dimensional Lagrangian tori.

(4) In the physical model of a non integrable system considered, we have concentrated
our attention on the computational aspect of the semiclassical quantization by means of the
complex WKB method. We did not touch some interesting problems related to the geometric—
topological nature of the complex germ indices on isotropic manifolds (Lagrangian of less
than full dimension). They are being intensively studied at present (e.g., [33-35]). In
connection with this we note that the complex germ index ﬁyﬂ (3.2), along the generatrix
¥, of the tori A%(1, E), can be separated into two parts: one topological and the other
dynamical. its topological part is formed by the first term 27, which can be more generally
written as o, where u is the Maslov standard index} of the closed (Lagrangian) curve
AY(I, E) in the two-dimensional phase plane with coordinates (p,, o). The dynamical part
is related to the characteristic exponent 8(J, E) of the Floguet solution (2.17). Namely,
its integer part [B(/, E)] can be interpreted as the winding number of the closed phase
trajectory Al(/, E), with respect to the reduced four-dimensional phase space Rf,.q, with

t The complex constants C2* and CZ in (6.3) and (6.9) can be represented in the form CF = MDY g
Cf; = e~ iW/2%  where o, cr‘,f‘ are the Maslov indices of charts of the canonical atlas on the curve Al(/, E)
(see [26] for details).
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coordinates (p,, p;, p,z). This fact is general for stable closed trajectories of multi-
dimensional Hamiltonian systems. when these trajectories are ‘well enough’ embedded into
the phase space. This problem and the relationship between a complex germ index and the
geometric properties of the Maslov index in the semiclassical Gutzwiller trace formula [29]
have been widely studied (see, e.g., [36-39]) and will be considered in a future paper.

Second, let us note that the second quantization condition (3.3) of the family
[A%2(1, E), r3(A%(1, E))] along the cycle y,, has the same form as the semiclassical
quantization formula of stable orbits that was obtained in [40], by expanding the amplitude
of each trajectory into a geometric series in the Gutzwiller trace formula. A quantization
condition similar to that in [40] is contained, as a particular case (k = 1), in the quantization
conditions of Bohr-Sommerfeld type for families of k-dimensional isotropic manifolds A%,
with complex germs r”(A*), from the complex WKB method given in [10]. Moreover, the
quantization condition obtained there for stable closed phase curves includes the case when
focal points are presentt. It is worth noting also that the complex WKB method and its
results (see, e.g., [10,11], etc} are mathematically rigorously established.
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Appendix

Below we present the results of computation according to the scheme given above with
accuracy O(g2), g5 — 0. To do this it is convenient to pass to dimensionless variables:
the coordinate x becomes o = apx and the reduced spectral parameter £ becomes
E = hoy(E + 1)/2; I is equal to {&, [{| 3 1. In particular in this case equation (4.1)
takes the following form

S R A Ban, . es)
E-Z o 4e2) dax= B Nwan) ca
wlx‘..(es) ( 4 x2 +Esx) T=R N + Iz + (v+ 2) (A.1)

For the solution X (¢, X, I, £5) of equation (2.8), perturbation theory gives us the expansions
of the amplitude and frequency of nonlinear oscillations in the form:

X(t, E 1, 65) = Xolw(es)t, E, 1) + es X\ (w(es)r, E, 1) + O(ed)

w(es) = o} + zsws + O(e?) (A2)
where X¢ and X are the following functions, 27 -periodic with respect to T = w(es)t:
Xo(t, E. ) = v2(E + asint)!/? Ezin (A.3)
3 3Xo(z, E, D) (T oXo(r, B, D) ..
Xz, B 1y = —22%0C )f T
dr o aE
dXo(r, E, [y f’ aXo(r, E 0y .. 82X,
2 : =207 —=2 — X4~
+ Y- A PY: F(T)d? F(r) 2wf 72 Xg—2
{A.4)
o = oy @ = wyot

t For closed geodesics without focal points on a compact Riemann manifold, similar quantization conditions were
obtained in [41] for the first time,
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P

' a2V E +a
where E(k) and K(k) are the complete elliptic integrals of the second and first kind
respectively; k = £(E, 1) = (2a/(E + a))"/? and a = (E? — I%)Y/2, Let us substitute these

formulae into (2.16). We then find the expansion for the variable frequency (¢, E, 1 £5)
in series of gg as g5 — 0

(EG(E, DIE + a) — EK(K(E, )} (A5)

Q0 B\ 1, 85) = Qp(@(Esh, E, 1)+ es@i (wes)t, B.D) + O() (A5)
where the frequencies Q3 and m ©f are 2 -periodic in the first argument:

Q3(r, E, ) = yel(mX3(z, E, 1))~

Qi (r, E, 1) = 3yefX,(z, E, ) (mX{(z, E, 1))

For wy - 0o, the averaging method for the Hill equation (2.16) with variable frequency
(A.6) gives the following expansion for the Floquet exponents 8(I, E):

BU, B)f2m = Syesa(E, D) + e frea(E, 1) + O(2) (A.7)
) 1w \7 (E(k(é,m )”2
Bon=(L _ = (=) A8

(k) (ZJT]t; xg(r,E.t)) ZV2UNVE —a oo

2
oa(E, 1) = —3Qa (E, )™ fo Xi(z, E,)(Xo(z, E, DY dr. (A.9)

For the integral on the left-hand side of {A.1) we find, to order O(ag), gg— 0

. xles) ¢ 42 2 2\ . .
J(E,l g5) = f (E -S54 —S) dx = Jo(E, 1) + esJy(E, 1) + O(e3)
x-{es) x
(A.10)

where
JO(F:', D= :zr(E' —|IN/2 Jl(E‘,l) = \/5._‘11{(!()/1,/ E+a.

From (A.1), (A.7)(A.10), we obtain the following approximate (modulo O(2)) equation
for the reduced energy E = Ej 4, v(, £5)

JoE, 1) + es (B, 1) = mln, + (v + DA+ /7 (ey "o (E, ) + £ (B, D).
With the same accuracy O(ag), gg — 0, its solution has the form

E= E’u + E;lzél + SSEZ -+ O("—",]g/z)

E(k(£o)) )"2
w2 Eo ~ (E] — 1)}/2)\12
= _ 2./2yK(k) 4 (v+1/2) /7y
n[Eo + (E§ = 12172 {V2JUI[Bo — (E§ — I)VAINA(ES — 17)
x{Eq - EG(Eo)) — [Eo — (E} — BYVK (K (Eo))). (A.11)

Eo=2n,+ 1+ (1 +20/7 Ei=2/70v+ é)(
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